
GFS: a Graph-based File System Enhanced with Semantic
Features

Daniele Di Sarli
University of Pisa

Pisa, Italy
d.disarli@studenti.unipi.it

Filippo Geraci*
Istituto di Informatica e Telematica, CNR

Via G. Moruzzi, 1
56124 Pisa, Italy

filippo.geraci@iit.cnr.it

ABSTRACT
Organizing documents in the file system is one of the most
tedious and thorny tasks for most computer users. Taxonomies
based on hand made directory hierarchies still remain the only
possible alternative for most small and medium enterprises, public
administrations and individual users. However, both the
limitations of the hierarchical organization of file systems and the
difficulty of maintaining the coherence within the taxonomy have
raised the need for more scalable and effective approaches.

Desktop searching applications provide proprietary interfaces that
enable content-based searching at the cost of having no control on
the indexing and ranking of results. Semantic file systems,
instead, leave users the freedom to manage the taxonomy
according to their specific needs, but lose the standard file system
features.

In this paper we describe GFS (graph-based file system) a new
hybrid file system that extends the standard hierarchical
organization of files with semantic features. GFS allows the user
to nest semantic spaces inside the directory hierarchy leaving
unaltered system folders. Semantic spaces allow customized file
tagging and leverage on browsing to guide file searching.

Since GFS does not change the low-level interface to interact with
file systems, users can continue to use their favorite file managers
to interact with it. Moreover, no changes are required to integrate
the semantic features in proprietary software.

Categories and Subject Descriptors
D.4.2 [Storage management]: Storage hierarchies

Keywords
Semantic browsing, file tagging, user experience.*

* Corresponding author

1. INTRODUCTION
Handmade directory hierarchies still remain the only method to
classify documents for most computer users. Surprisingly, even
public administrations as well as small and medium enterprises
rely on manual classification. Once a new administrative task is
started, the secretariat staff creates a new folder with a self-
explaining name inside a directory tree. The directory path often
consists of a base path (the hierarchy root) and a list of
subdirectories representing a set of tags describing the inner
documents. For example, the path /documents/contracts/2017/su-
pply/company_XYZ/signed/ refers to the folder of the signed
contract stipulated with the company XYZ for a supply service in
2017. The hierarchy root is located in the physical directory
/documents.

The disadvantages of this organization are evident since, as
observed in [7], the user has to deal with complex information
management problems in order to maintain consistency within the
taxonomy, and, in turn, to be able to locate files.

These problems are further complicated by the severe limitations
of the manual hierarchical organization of files [13]. In fact, since
adding a new tag corresponds to push a file down one level in the
hierarchy, the number of tags that can be used in practice for a
single file is very limited. This, in turn, drives the user to create
additional meta-categories that are the result of merging together
subsets of tags. For example one can be induced to create the
meta-category 2016-17 for those documents that are valid across
both the years. This, however, causes the documents in this
directory not to be shown neither in the directory of 2016 nor in
that of 2017. Another important limitation is that tags typically
belong to different categories (i.e. document type, period, etc.).
The rigidity of the hierarchical organization of the file systems
forces the user to nest these categories. In absence of a rigid rule
about the precedence order among categories, this can cause an
inconsistent organization of different branches of the same
hierarchy.

Despite their limits, file systems have huge advantages. They are
natively present with no extra costs or struggling with installation
in every desktop operating system. Moreover, OSs expose easy
and convenient APIs (Application programmable interface) that
enable applications to control the file system hiding the
underlying low-level details. As a result, users can interact with
the file system by means of the same standard interface either
within or outside applications. In turn, this fact has an impressive
positive impact. In fact, a common interface opens to the
possibility of interoperating on the same file hierarchy among
different applications without requiring the user (and even the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICISDM '17, April 1–3, 2017, Charleston, SC, USA.
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4833-1/17/04…$15.00
DOI: http://dx.doi.org/10.1145/3077584.3077591

applications) to be aware of it or to do any action to enable
sharing.

Aimed at overcoming the limits of standard hierarchical file
systems several alternatives have been proposed in the literature
(We will discuss them in more detail in section 2). Desktop search
applications are stand-alone software that enables keyword-based
searching. Their objective is not that of improving the file system
organization but that of easing the retrieval process making file
location de facto not important.
Semantic file systems (SFS) goal is that of replacing the position-
based with an associative-based access to files. In their early stage
these file systems extended the API adding new system calls for
controlling tags and to perform searching. This required them to
be endowed with an ad-hoc browsing application. More recently
SFSs strategy has evolved leaving the system APIs unaltered
changing only the behavior of calls as to provide associative
access to the files. The advantage of this latter strategy is that
standard applications directly inherit the new associative
capabilities [8]. On the other hand, however, semantic file systems
lose the original position-based file access.
In this paper we try to address the question whether it is possible
to extend standard file systems adding extra semantic features
without altering the API or not.
Our key idea is that standard and semantic directories coexist in
the same tree structure and the file system is provided with a
criterion to decide the directory type (either semantic or standard).
Consequently, it is possible to dynamically change the API
behavior according to the context. Our hybrid approach takes
advantage of the benefits of semantics without sacrificing any of
the advantages of the classic hierarchical file systems. In fact, in
the absence of semantic directories, our file system reduces to a
standard one. Each semantic directory behaves as a stand-alone
semantic file system with its own namespace and set of tags. This
allows overcoming the limitations due to a single namespace for
the whole semantic file system. Lastly, our approach can be
extended with new directory types simply extending the
classification criterion for the directory type and adding the new
semantic to the API.

2. RELATED WORK
Implementing a new file system is a complex task. In fact, it
requires writing procedures in kernel space as well as controlling
all low-level hardware details. This difficulty has led researchers
and companies to develop stand alone searching software in place
of semantic file systems.

Desktop search applications directly designed by OSs producers
(Apple’s Spotlight [3], Linux KDE Baloo [6], and Windows
Desktop Search [11]) are among the most successful solutions
because of their native integration with the underlying operating
system. Besides general-purpose desktop search software, some
applications for specific problems have been proposed. Mendeley
[15], for example, is a popular tool for managing and sharing pdf
articles.

All these solutions, however, have in common that the user is
obliged to use an ad-hoc interface to locate files. Retrieval is
based on keyword oriented searching while browsing is not
supported. Moreover, third-party applications have to implement
ad-hoc interfaces to access the searching features or, more often,
have no access at all.

The advent of FUSE (File system in user space) had the effect of a
resurgence of research about pure semantic file systems.
According to [12] developing in user space produces a consistent
blowup of performance for a single small writing operation, but
the gap becomes negligible with increasing data transfers.
Consequently, FUSE does not change the file system user
experience.

Only few approaches, however, exploit the standard POSIX API
for managing semantics allowing users to keep using their favorite
file browser. SFS [8] is an early attempt in that sense. This file
system consists of two components: an indexer that extracts
semantic tags from files and the driver that exports the POSIX
API. In comparison with a standard driver, the only modification
is in the readdir () system call. Besides standard paths, this call
can also accept extended paths where a list of tags is specified.
The resulting virtual directory contains only the subset of
documents matching all the tags in the subtree of the specified
path. Editing a path, however, was a common practice in the age
of command line interfaces, but it is impractical nowadays with
graphical interfaces.

In [9] the authors argue that the user may want to control which
portion of file system must have a standard behavior and which
must be semantic. In order to enable this option, they extend SFS
with the concept of virtual mount point (namely a directory that is
the root of an SFS instance).

TagFS [4] is the most similar to our approach and it is the only
one that enables a manual control of the taxonomy. As in our
solution, the creation of a directory is equivalent to the creation of
a new label and tagging a file is controlled with the file copy
operation. There are, however, some important differences.
Firstly: TagFS semantic features substitute the canonical behavior,
thus losing the standard capabilities; moreover: the entire file
system share the same namespace, thus no two files can have the
same name. Another important difference is that TagFS implicitly
organizes tags as a clique (it is always possible to move from a tag
to another) while our solution uses a series of editable ego graphs.
This feature is important to control the number of visualized items
by the directory listing when the number of tags increases over
few units (see section 3.4).
Most effort has been spent in solutions that extend file system API
with metadata that enables searching.
In [1] the authors propose LiFS a hierarchical file system
extended with application customizable attributes in the form of
(key=value). LiFS enables also links among files (for example a
document can be linked to the appropriate viewer). However,
these links are not used to improve the user navigation experience.

In [14] the authors propose a distributed index that speeds up
metadata searching in the context of high-throughput computing.
In [2] the authors observe that the POSIX interface for user
metadata storage has become a major bottleneck for very large file
systems. The authors also criticize the hierarchical organization
and propose a graph-based ad-hoc file system to store metadata as
opposed to relational databases. File identification and attribute
retrieval is performed using a query language interface. Although
[2] shares with us the idea of using a graph instead of a tree to
organize a file system, their work is tailored on data access
performances and not on the user experience.

Sometimes semantic file systems have been used for special
purposes. In [10] the authors face the problem of keeping version
history of all files introducing Sedar: a file system for deep
archival. Sedar uses semantic metadata to store semantically

similar documents close to each other on the disk. This enables a
faster access to related documents as well as the possibility of
using locality to compress data reducing the storage consumption.

Proposing SIL (Semantic instead of Location) [5] the authors face
the problem of integration among data management software
participating in the business process from a different point of
view. Their idea is that of replacing the path-based hierarchical
location with a semantic one. In short, the path is not seen as an
ordered list of directories but as a set of attributes. As a result,
accessing a file does no longer require remembering the order of
the attributes. Similarly to our approach SIL maps directories into
attributes. However, SIL still requires knowing all the tags to find
a file. Moreover, the file system behavior is uniform both in the
user data directories and in the system directories. This, in turn,
opens to security issues.

3. GFS DESCRIPTION
At first sight our approach could be seen as a mix of HAC [9] and
TagFS [4]. In fact, as in [9] our idea is that, if it is to be used in
practice, a file system must provide both: the standard features for
system folders and a series of separate semantic spaces for user’s
collection of data. As in [4], users must be able to build their own
taxonomies (which in our case are not organized as a big clique)
and tag files accordingly. Moreover, to relieve the user effort of
manual tagging, the file system must provide natural methods to
assign multiple tags as well as tagging multiple files at once.
Since current file managers are all designed for browsing, this
should be the retrieval paradigm both inside and outside the
semantic spaces.
GFS can be seen as a standard file system where in every location
it is possible to create two types of directory: standard and
semantic. Standard directories have their own namespace and
behave as in traditional file systems independently from the type
of their direct ancestor. A semantic directory having a standard
directory as a direct ancestor defines a new semantic space with
its own namespace, while a semantic directory that has a semantic
direct ancestor defines a new tag. We call the root of a semantic
space entry point.
A semantic space can be modeled as a direct connected ego graph
where the entry point is the center and the tags are the other
nodes. Once a new tag is created two edges from and to the entry
point are created. In addition the new tag is doubly linked with all
the tags in the path to the entry point. Creating a standard
directory inside a semantic space causes the exit from this space.
This enables the possibility of alternating semantic spaces with
standard hierarchies. A usage example of this mechanism could be
the case of a user who wants their home directory to be semantic
but they also want a separate namespace for music, one for their
working documents and a standard behavior for log files and
downloads (see figure 1).

3.1 Identification of the directory type
Evaluating the directory type is the most used subroutine inside
the GFS business logic. It is repeated at least once for every call to
the file system API, thus an efficient mechanism for this task is
crucial.

Moreover, the directory classification cannot change the POSIX
interface. To do this, GFS encodes the directory type directly in
its name requiring semantic directories to start with a special
symbol. Although this introduces a little limitation on the user’s
choice of the directory names, it is a commonly accepted practice
(for example: filenames beginning with dot are hidden in the
directory listing of the UNIX ls command, additional metadata
files often begins with dot followed by underscore “._”) that has
the advantage that it does not require accessing to extra
information. In our file system we left the prefix for semantic
directories configurable. For the sake of explanation in this paper
we use the dollar ($) symbol.

3.2 Graph management
Since entry points and tags are special types of directories, they
are manipulated by means of the standard system calls for
directory management. Mkdir () is used to initialize a new
semantic space, to add new nodes or to add new edges while
unlink () is used to remove nodes, edges or the entire semantic
space.

3.2.1 mkdir ()
Besides standard directories, this call is used to create semantic
directories. Specifying whether the semantic directory is an entry
point or a tag is not necessary because this information is derived
from the direct ancestor. In fact, since semantic spaces cannot
intersect to each other, an entry point always has a standard parent
directory while tags have a semantic direct ancestor. Contrasted
with standard directories, creating an entry point does not produce
appreciable differences from the user point of view: a new node is
created and linked to its direct ancestor, then the namespace is
initialized.

Creating a tag, mkdir () verifies whether the corresponding node
already exists and creates it if necessary. Then the new tag is
connected to the graph adding edges from all its direct semantic
ancestors. Finally, in order to maintain the ego structure of the
semantic space, a link from the corresponding entry point is
created as well.

Figure 1. A sample tree view of a semantic home
directory that mixes standard directories with semantic
spaces for: music and working documents.

3.2.2 unlink ()
The unlink call receives in input the absolute path of the directory
to remove (target) and its behavior depends on the type of the
direct ancestor. If the ancestor is non-semantic, unlink () has a
standard behavior independently from the type of the target.
Otherwise, if the ancestor is a tag, the link between the tag and the
target is removed, but the directory is not erased. This leaves it
accessible from other paths, thus, in this case the target is not
required to be empty. Finally, if the ancestor is an entry point all
the references to the target are removed and the directory is
erased.

3.3 File tagging
GFS uses two equivalent methods to tag files and directories:
linking and copying. Linking is done by means of the link ()
system call. To speed up tagging, GFS assigns all the tags of the
destination path. As a further simplification, multiple assignments
of the same tag do not raise an error but are silently ignored.

Copying requires some extra caveats. This operation, in fact, is
not atomic but it is the effect of a series of system calls that cause
the impossibility for the file system to be aware that they
correspond to a file copy. In particular, copying:

1) the target file is created or opened in writing mode,
2) the truncate () is called to set the file size to 0,
3) a series of writing operations copy the content from the

source file into the destination,
4) the target file is closed.

This mechanism has two problems: firstly, since the source and
destination file are in reality the same file, the truncate () would
affect the source file destroying its content; secondly, the series of
unnecessary physical writing would cause an increase of latency
of the tagging proportional to the file length. We address both
these issues using virtualization. When a file in a semantic space
is opened in writing mode a virtual file (called ghost file is
created. All the subsequent operations are not applied to the
physical file, but the modifications are recorded in the ghost file.
Concurrent accesses to the same file are diverted to the ghost file.
When the file is closed all the modifications are applied to the
physical file and the ghost file is removed.
Notice that the series of write () calls due to file copy do not
modify the source file and, thus, they are not stored in the ghost
file. This, in turn, avoids unnecessary writes on the disk and the
consequent time and resources consumption.

3.4 Visualization
The size of a semantic directory can quickly increase with its
usage. In particular entry points list all files, directories and tags
of a semantic space. Moreover, it is very likely for a semantic
space to contain cycles that, in turn, can generate either infinitely
long paths or an infinite number of alternatives to reach the same
file. Until now, dealing with these problems has been left to file
managers. However, if not well addressed, visualization can cause
a very poor user experience and, consequently, discourage the
user from using semantic file systems.

We deal with the problem of the directory size by controlling the
order in which the readdir () system call returns the elements of a
semantic directory. We first return the list of tags, then files in
lexicographic order, finally standard directories in lexicographic

order. Pushing directories on the bottom of the listing has the
benefit of keeping them visually separated from tags (Note that
directories and tags have the same icon). Sorting tags is more
complex. The lexicographic order eases searching but spreads tags
of the same category (i.e. classifying music the genres would be
mixed with the artist names). Besides lexicographic ordering we
provide a heuristic that attempts to mitigate tag spreading. We
hypothesize that two tags of the same category are unlikely to be
directly connected. We further observe that the entry point-
centered ego structure of semantic spaces causes the shortest path
between two nodes to have length 1 when the corresponding tags
are connected, 2 otherwise. Let 𝑇 = {𝑡!, 𝑡!,… , 𝑡!} be the
lexicographically ordered list of tags in a semantic space, given a
tag 𝑡, let 𝜙 𝑇, 𝑡 be the sorted list of tags of 𝑇 at distance 2 from
𝑡. Under our hypothesis the list t, 𝜙 𝑇, 𝑡 is likely to be a
category, thus its elements should be visualized consecutively.
Our heuristic works as follow. Let 𝐿 be a new initialized list,
iteratively: removes from 𝑇 the first element 𝑡 = 𝑡!"# (!) and
append it to 𝐿. Then extract from 𝑇 the elements 𝜙 𝑇, 𝑡 and
append them to 𝐿. The procedure stops once that 𝑇 becomes
empty. The ordering of 𝐿 is used to display the tags.
GFS uses a very simple and effective method to prevent users
from following infinite paths during browsing: visualizing a
semantic directory, tags already present in the path are not shown
even if the link between the corresponding nodes exists. In
general, paths with multiple instances of the same tag are
considered as not valid, thus, attempting to access them, the
system call returns the ENOENT error.

3.5 Tagging shortcuts
The cost of allowing a total control on tagging is that of leaving
all the burden of manually classifying each single file to the user.
Without ad-hoc mechanisms that simplify this task, manual
tagging can quickly become impractical and, in turn, makes the
semantic features unusable. We designed several shortcuts that
help users to quickly build or replicate their taxonomies and
enable fast multiple tagging of files.

3.5.1 Enable recursive copies
Software for recursive copy of directory trees often uses a depth-
first approach. Creating the taxonomy structure, however, this
approach can generate a series of EEXIST errors due to the fact
that the tag has already been created in a deeper position. We deal
with this problem relaxing the behavior of mkdir () when involves
a semantic space. In this case, if a directory already exists, the
system call does not do anything.

A similar problem can arise copying files. In fact, since the same
file can have multiple paths, the recursive copy could erroneously
attempt to copy a file on itself (i.e. applying the same tag several
times). In this case, however, the mechanism described in section
3.3 prevents the file to be truncated and correctly manages the
copy.

3.5.2 Enable multiple tagging
The easiest method to apply multiple tags at once is that to label
files with all the tags of the semantic path where they are copied.
This simple mechanism, however, is not powerful enough when
dealing with large amounts of files. We control multiple files
tagging by means of the rename () system call. In particular GFS
enables a standard directory to become semantic and vice versa.

In the first case all the files are moved in the semantic space and
are tagged according to the destination path. The procedure
returns an EEXIST error in case of clashes in the namespace and
no file is moved.

Converting a semantic directory into standard poses some issues.
According to the expected behavior:

1) the target should be standard and should contain all the
files of the source,

2) the internal tags should be destroyed and,
3) the source directory should be completely deleted.

However, if the source is a tag, its removal does not imply the
removal of the inner files that remain accessible from other paths.
On the other hand, if files are not removed the rename () would
have the effect of copying files instead of moving them. We found
that ensuring the above three properties (thus removing the files
from the semantic space) is more intuitive than producing copies
of the files even if this means that the rename () affects the entire
semantic space.

4. CONCLUSIONS
Organizing files is a frustrating and ubiquitous task that
discourages most computer users. Accurate taxonomies enable
fast retrieval of documents at the cost of a huge effort of building
and keeping them tidy. Misclassification of a file is not much
better than its accidental deletion. Content-based searching
applications can be helpful for general users, even if the lack of
any control on the indexing and ranking mechanisms makes them
of little use when the volume of data increases.

In this paper we introduced GFS, a new hybrid file system that
overcomes the limitations of the tree-based organization of file
systems allowing semantic spaces to be mixed with the classic
hierarchical structure. Our file system does not require any
modifications to the standard POSIX interface and, thus, leaves
users to control all details by means of their favorite file browser.

Although GFS shares some ideas with other proposals, previous
approaches suffer from a lack of usability that caused their limited
practical use. Designing GFS we focused on this aspect conveying
the idea that file systems cannot delegate the user experience to
file managers. The mechanism to create or assign multiple tags at
once, that for multiple file simultaneous tagging, and a sensible
ordering of the directory listing, are just a few examples in this
direction.

5. REFERENCES
[1] Sasha Ames, Nikhil Bobb, Kevin M Greenan, Owen S

Hofmann, Mark W Storer, Carlos Maltzahn, Ethan L Miller,
and Scott A Brandt. 2006. LiFS: An attribute-rich File
system for storage class memories. In Proceedings of the
23rd IEEE/14th NASA Goddard Conference on Mass
Storage Systems and Technologies.

[2] Sasha Ames, Maya Gokhale, and Carlos Maltzahn. 2013.
QMDS: a File system metadata management service
supporting a graph data model-based query language.
International Journal of Parallel, Emergent and Distributed
Systems 28, 2 (2013), 159-183.

[3] MAC Apple. 2012. OS X Spotlight. (2012).

[4] Stephan Bloehdorn, Olaf G�orlitz, Simon Schenk, Max
V�olkel, and others. 2006. Tagfs-tag semantics for
hierarchical File systems. In Proceedings of the 6th
International Conference on Knowledge Management (I-
KNOW 06), Graz, Austria, Vol. 8.

[5] Oliver Eck and Dirk Schaefer. 2011. A semantic File system
for integrated product data management. Advanced
Engineering Informatics 25, 2 (2011), 177-184.

[6] KDE e.V. 2016. KDE Baloo. (2016).

[7] Sebastian Faubel and Christian Kuschel. 2008. Towards
semantic File system interfaces. In Proceedings of the 2007
International Conference on Posters and Demonstrations-
Volume 401. CEURWS. org, 20-21.

[8] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and
James W. O'Toole, Jr. 1991. Semantic File Systems. In
Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles (SOSP '91). ACM, New York,
NY, USA, 16-25. http://dx.doi.org/10.1145/121132.121138

[9] Burra Gopal and Udi Manber. 1999. Integrating content-
based access mechanisms with hierarchical File systems. In
OSDI, Vol. 99. 265-278.

[10] Mallik Mahalingam, Chunqiang Tang, and Zhichen Xu.
2003. Towards a semantic, deep archival File system. In
Distributed Computing Systems, 2003. FTDCS 2003.
Proceedings. The Ninth IEEE Workshop on Future Trends
of. IEEE, 115-121.

[11] Microsoft. 2008. Windows Desktop Search. (2008).

[12] Aditya Rajgarhia and Ashish Gehani. 2010. Performance and
Extension of User Space File Systems. In Proceedings of the
2010 ACM Symposium on Applied Computing (SAC '10).
ACM, New York, NY, USA, 206-213.
http://dx.doi.org/10.1145/1774088.1774130

[13] Margo Seltzer and Nicholas Murphy. 2009. Hierarchical File
Systems Are Dead. In Proceedings of the 12th Conference on
Hot Topics in Operating Systems (HotOS'09). USENIX
Association, Berkeley, CA, USA, 1-1.

[14] Lei Xu, Ziling Huang, Hong Jiang, Lei Tian, and David
Swanson. 2014. VSFS: a searchable distributed File system.
In Parallel Data Storage Workshop (PDSW), 2014 9th.
IEEE, 25-30.

[15] Holt Zaugg, Richard E West, Isaku Tateishi, and Daniel L
Randall. 2011. Mendeley: Creating communities of scholarly
inquiry through research collaboration. TechTrends 55, 1
(2011), 32-36.

